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やってはいけない線形解析の定義・落とし穴

線形解析の注意点

変位・固定条件の間違い

モデル簡略化による課題

応力の見方も・・

樹脂ブーツの解析でのバンド固定

変位・固定条件の間違い

梁の変形解析、最も簡単な解析です。

１）変形条件を下方向に変位条件で与えていませんか？
２）固定側、完全固定(X=Y=Z=0)としていませんか？

それは本当に正しい条件ですか？

A B

１）変位をY=０.１mmとした場合、本当に直線状に並ぶと思いますか？
０.００１mmの変位の差でも、反力は大きく異なるので

そのように変形させることは至難の業です。

２）固定条件：金属を完全固定する治具が存在すると考えますか？

一定の変位にはならないものを
変位拘束で解析すると大きな誤差が出ます。

モデルやソフトの癖も存在します。
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変位・固定条件の間違い

固定側

テトラ（４面体）１次要素では

正解が得られないことは周知のこと。

固定側

では、ヘキサ（６面体）要素で
正解は得られますか？

テトラ（４面体）２次要素は

正解が得らるモデルです。

残念ながら
デフォルトの条件では正解は得られません。

ソフトに癖があるので、

次ページ以降、参考資料を示す。

もっとも単純な梁の変形・固有値解析

縦曲げ１次 横曲げ１次

では実験値と一致しますか？

ここだけモデル化したら
合わない

６面体要素で
解析

全体をモデル化

この辺りまでモデル化

金属の完全拘束はありえない

固有値解析もSI系で
ton/m3などの回答得たことは？

正しくは
N・sec２/mm4



2026/1/18

様々な固定要件・拘束条件
プーリーダンパー形状

ボルト固定は？

金属

ゴム

金属
ハブ

金属の解析をするのか
ゴムの解析をするかで異なる。

１／２モデル、１／４モデルでの
対称面は変位で与えて良い。

変位も場合によっては分散荷重の
方が正解があられる。

応力・変形解析も・・

ひずみ
ゲージ

ひずみゲージも面積を持ちます

解析モデルとゲージ位置、面積
マッチしていますか？

測定結果との比較は、位置やメッシュのサ
イズのアンマッチで合致しないと勘違い。

モデル簡略化による課題
クランクシャフトの剛性、振動解析

ソリッド要素での固有値解析/曲げ１次モード

ビーム＆
シェル要素モデル

側面図：〇印部質量と剛性をダブらせない

シェル要素は厚みを持つため、直接結合させると
ビームとシェル部の剛性と質量がダブってしまう。

今はハードウェアの能力が格段に向上したのでソリッドで十分解析が可能。
しかし、モデルが肥大化した場合にこの方法が有効になり、

手法を確立しておく必要がある。
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等速ジョイントブーツの変形解析

谷部が接触

谷部が接触しない

山部の角度が異なる

原因）
拘束条件：シール部端部まですべて拘束している為

拘束条件失敗の一例

バンドとブーツ端部の隙間までの表現を間違うと、設計者解析でも失敗することがある。
単純な条件設定、拘束のミスは教育等でカバーしながら精度アップできます。

1mm空ける

拘束範囲

モデリングの勘違い

モデリング・メッシング
の注意点

要素タイプ選択の落とし穴

見たいところを見るメッシング

平面応力と平面ひずみ

どこまで細かく
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要素タイプ選択の落とし穴 – ２次元要素に注意-

勘合代

ブッシュ
1/2モデル

圧入・勘合解析 絞り解析

軸対称モデル
これを選ぶのは簡単

ワイパー断面形状

軸平面モデル

防舷材形状穴あき台形ゴム形状 鉄道用レール

平面ひずみと平面応力要素の違い

平面ひずみとは無限に奥行きがある場合、その中央で厚みの影響を受
けない部位、平面応力とは厚みの影響を受ける場合で選択。

おのずと要素選択が可能。
ワイパー、レールは平面ひずみになるが、端は平面応力での解析

注意：MARCのように超弾性の平面応力を持たないと考えられるものも
金属（#3）要素でのアップデートラグランジェ法で可能になる。

対称面と考えても

見たいところを見るためのモデリング
線形解析でこの解析はできないかもしれませんが、考え方は基本、同じです。

https://www.tribonet.org/wiki/hertz-equations-for-elliptical-spherical-and-cylindrical-contacts/

Hertzian contact equations for elliptical, spherical and cylindrical contacts

１．ヘルツの解析
接触幅は数ミクロン、その幅が確認できるサイズのメッシュ

面圧１：粗いメッシュ 面圧２：細かいメッシュ

位置

面
圧

面
圧

位置

面圧２００atm以上接触幅１０μm前後

摩擦の差が無ければ
反転なし

接触幅表現

ワイパーの接触幅・面圧解析

ゴム製品でも細分化メッシュ
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メッシングのテクニック

徐々に先端に向けて
細かく0.2μm程度に

ブレードラバーの例

モデリングの補足
変形形状を表現

粗いと点接触

参考

徐々に細分化
先端、徐々に細かく 接触幅計算でメッシュ大きさを決める

モデルの細分化

多角形になるため、形状にアタッチを行う。

■節点が円弧上に行くように移動

接触問題におけるエッジの影響

金属版

ゴム

ベース

引抜き

変形形状詳細
金属板が剛体の場合

金属版

この節点が
引っかかる

解決策
便宜的に小さいフィレットを作る

フィレットより接触部は小さい要素にする。
要素を増やすと解析時間増大：デメリット（変形時含めて）

接触幅に対して十分小さいフィレットとすることで、
解析時に大きな面圧などの差が生じないことを前提。

参考

変形形状詳細

金属版

この節点が
引っかかる

こちらに移動

この節点が
引っかかる
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見るためのメッシング -フィレットと分割数の関係-

最大応力部

一定分割数以上で飽和、解析時この辺を決めて比較する。

R部

正しい応力を求めるには
分割数が重要

非線形材料の落とし穴
材料定義の真実

ひずみエネルギー密度関数の真実

粘弾性定義の真実

どの領域のデータが有効か？ すべての領域を使うことが混乱を招く。

どこまで細かく

粘弾性データの効果、効力は・・

ポアソン比、体積弾性率、質量密度
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解析用

ひずみエネルギー密度関数表現の真実

連絡先 hagi@terakoya2018.com
080-2230-8785

ひずみエネルギー密度関数はすべての領域を精度よく表現できるほど

万能ではないため、優先順位をつけて製品ターゲットでデータを採るべきです。

簡易版のポイントをまとめたもので、 解析用お役立ち資料 | 寺子屋2018 (terakoya2018.com)
ひずみエネルギー密度関数表現の真実をご参照ください。

ひずみエネルギー密度関数について
基本式

エネルギーW＝W( I１, I２, I３)    

伸張比λ=１＋ε として表現

Ｉ１=λ１
２+ λ２

２ + λ３
２ ［対角線効果］

Ｉ２=λ１
２λ２

２ +λ２
２λ３

２+λ３
２λ１

２ [面積効果］
Ｉ３=λ１

２λ２
２λ３

２＝１ ［体積効果］

伸張試験概要

主な表現式
１）Mooney高次式 W=C 10 (I1-3)＋ C 01 (I2-3)＋ C 11 (I1-3) (I２-3) ＋ C 20 (I1-3) ２＋C 30 (I1-3)３

２）Ｏｇｄｅｎ W=∑ （λ1+λ2+λ3 - 3）
n μi

i=１ αi

αiαiαi

３）Arruda-Boyce
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製品は、ほとんどが圧縮なのに
材料試験は、なぜ引張試験なのか？

ゴムの非圧縮性

Ｉ３=λ１
２λ２

２λ３
２＝１

二方向を引っ張ると、一方が圧縮

エネルギー関数を明確に定義できます
（全ての方向の伸張比λが定義できる）

よく質問を受けますが、どの表現関数を使っても
元のデータが同じなら、解析に予測精度は同等です。式の優劣はありません。

圧縮

伸張

伸張

圧縮試験で

均等変形は難しい

伸張なら均等に

変形可能です。

圧縮荷重は非常に
大きくなる。

エネルギー関数導出の落とし穴

均等二軸領域

一軸拘束二軸領域

一軸領域

均等二軸領域

一軸拘束二軸伸張領域

補間
ライン

+

+

片方（均等のみ）データから
推定は、他方の誤差が

認識できない。

両方の測定データ
式が不完全な為

誤差は拡大するが
大きくはずれない

一軸領域

++

+

二軸均等伸張データで予測できるのは、風船のような製品
割合は少ない

２方向に均等に伸張する製品は
ゴム製品でも少ない

⇒あまり均等二軸伸張の領域データは使用しない 風船は均等二軸領域
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一軸拘束二軸伸張試験が有効な理由
最大-中間-最小主ひずみ成分 をみれば一目瞭然

最大-中間-最小

1.0：0.6：-1.4

最大-中間-最小

1.0：0.3：-0.7

最大-中間-最小

1.0：0.4：-1.0

最大-中間-最小

1.0：-0.4：-0.4

単軸試験が有効
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単軸データでの解析
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二軸試験からでは
予測精度が悪い

二軸データでの解析
二軸データでの解析

二軸測定時の有効断面の検証
変形前初期形状 伸張形状（ひずみ表示）

安定したデータ

不安定なデータ

文献上の有効断面

正しく回帰しないと
使えません

荷重採荷範囲

合力-１～３回目の荷重

伸張側チャック荷重

拘束側チャック荷重四隅の荷重
不均一

四隅の荷重
不均一

四隅の荷重を採らず、有効断面で処理することが重要です。
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サンプル取り付け部

従来の試験機は、横置き型・大型 非常に高価（１千万円程度）なのに対して４分の１以下の価格で
必要な試験ができるため、有効な手段になりうる。

従来の二軸試験機

21

二軸試験機の比較と変形について

一軸拘束二軸試験

均等二軸試験
二軸試験・変形概要

二軸試験

簡易型二軸試験機
サンプル取り付け部

一軸拘束二軸試験

簡易型二軸試験・変形概要
縦型の為、

治具を使って装着

単軸及び純せん断領域の
測定ができるため十分
治具の工夫で均等二軸可能

従来型同様、四隅の荷重は外す。

簡易二軸試験機（単軸試験機へのアタッチメント）

リニアスライダーを利用した
アタッチメント

単軸及び純せん断領域の
測定ができるため十分
治具の工夫で均等二軸可能

既存の試験機に取り付けることで、試験機購入額の節約可能

リニアスライダー強度を確認、側面に記録用ロードセルを設置

設計＆制作にトライしてみませんか
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一軸拘束二軸伸張試験では２本の特性データが必須？

23

一軸拘束二軸試験
均等二軸試験

均等二軸試験であれば、２方向同じ
ひずみｖｓ反力となり１本の特性

一軸拘束二軸伸張試験では、２方向の反力が異なる。

２方向の特性から

エネルギーの微分値が得られ

W/  I1=C 10＋ C 11 (I２-3)

＋ ２C 20 (I1-3)＋３C 30 (I1-3)２

W/  I2= C 01 ＋ C 11 (I1-3)

それぞれの微分線図から各係数を回帰で求める。

２本の応力ひずみ（伸張比）線図が無いと、すべての係数が特定できない。
ソフトの中でどのような処理がされているかは不明ですが、

EXCEL標準回帰機能で求めることができます。


